

Questions/topics for today

- P fertilizer placement for wheat w/seed
- Fertilizer placement for corn
- Strip-till and fertilizer placement
- The role of inhibitors for N in NW KS
- Grain protein and time for N in wheat
- Micronutrients and P sources?

K-STATE

KANSAS STATE

1

KANSAS STATE

K-STATE

lill s	Fertilizer placement with the planter in				
	corn				
	2 x 2	Dribbled	In-furrow		
	•High volumes (and N)	• High volumes (and N)	Best for low volumes		
	•Corn response	•No need for 2x2 attachment	•No need for 2x2 attachment		
		•Similar corn response as 2x2			
K-STATE Research and Extension			KANSAS STATE		

	Starter N + K2O with the seed in medium- fir texture soil – no urea			edium- fine
		Row Spacing (in)	N + K2O (lbs/acre)	
RU		30	8	
		20	12	
		15	16	No UAN or ATS
		12	20	
		10	24	
K-STATE Research and Extension		6-8	30	KANSAS STATE

Starter fertilizer for corn

- Can be more beneficial under no-till
- In addition to P can add micros and sulfur if needed
- Dribble and 2x2 allow for higher rates, including nitrogen

K-STATE

Source and placement of N in <u>no-till</u> dryland corn

N Source	Placement	Yield Bu/a
Ammonia	Knifed	139
UAN	Knifed	136
UAN	Bdcst	118
Urea	Bdcst	123

K·STATE

KANSAS STATE

K-STATE

Inhibitors for nitrogen?

- What is the risk for leaching or denitrification in our soils in the NW?
- Urea on the surface in no-till may benefit from urease inhibitors:
 - Urea can also be incorporated with irrigation or rain
- Nitrogen placement, time and source are key factors

 KANSAS STATE

Grain protein and time for N in wheat

- First step is to meet N demands for the yield potential (soil + fertilizer N)
- Time: Split-applications and late N applications contribute with protein:
 - In many cases no additional yield response
- More intensive management for high yields AND high protein

K·STATE

Micronutrients

- Potential yield benefit for: Zinc, iron and chloride
- Foliar applications for most micros show very limited yield benefit
- What other main factors are limiting yields?

K·STATE

KANSAS STATE

K-STATE

P fertilizer source: Hydrolysis of polyphosphate to orthophosphate

Soil temperature (F)	24 hour Polyphosphate Hydrolysis (%)
41	30-40
68	50-60
95	80-90

Chang and Racz, 1977

P fertilizer sources: liquid or dry? Agronomic response in Kansas soils is similar for all P sources Key factors are soil test P levels, and fertilizer placement The amount of water in a fluid fertilizer is insignificant

• The selection of P source should be based on adaptation to the farmer's operation and economics

compared to the water already present in the soils

